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Scalars with different molecular diffusivities can be transported at different rates in
a strongly stratified, weakly turbulent flow. Rapid distortion theory (RDT) is used to
examine the mechanisms responsible for differential diffusion of scalars in a sheared
stratified flow. The theory, which applies when the flow is strongly stratified, predicts
upgradient flux and its wavenumber dependence, which previous direct numerical
simulations have shown to be important in differential diffusion. The net effect
of shear on differential diffusion depends on the Grashof number, or the relative
importance of buoyancy and viscous effects. RDT also allows the effects of the
density ratio, Schmidt number, Lewis number, scalar activity and mean shear to
be examined without the high computational cost of direct numerical simulation.
RDT predicts that differential diffusion will increase with increasing density ratio, but
only at low Grashof number. When the Lewis number is fixed, the Grashof number
below which differential diffusion occurs decreases with increasing Schmidt number,
and when one of the Schmidt numbers is fixed, differential diffusion decreases with
increasing Lewis number. Also, differential transport of passive scalars increases when
the Schmidt number of the scalar stratifying the flow increases.

1. Introduction
Ocean circulation models and oceanographic studies of diapycnal mixing often

assume that heat and salt have equal eddy diffusivities in a diffusively stable turbulent
flow. However, because the molecular diffusivity of heat is much larger than the
molecular diffusivity of salt, the two scalars can be transported at different rates in
strongly stratified weakly turbulent flows (e.g. Turner 1968; Altman & Gargett 1990;
Jackson & Rehmann 2003b). In the vast regions of the ocean interior where weak
intermittent turbulence prevails (Merryfield 2005), this phenomenon of differential
diffusion can be important for the interpretation of vertical mixing in the ocean
(Gargett 2003), the generation of finestructure (Jackson & Rehmann 2003a; Martin
& Rehmann 2006), ocean modelling (Merryfield, Holloway & Gargett 1998), and the
propagation of intrusions (Hebert 1999). We extend an analytical model developed by
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Jackson et al. (2005) to examine the effect of shear and the properties of the scalars
on differential diffusion.

Previous work has shown upgradient (or countergradient) fluxes to be important
in differential diffusion. Rehmann (1995) and Nash & Moum (2002) compared the
mixing time to the time for decay of the turbulence; when the mixing time is large,
the turbulence will decay, and restratification will occur before the scalar can be
irreversibly mixed. Direct numerical simulations (DNS) have provided information
on the mechanisms leading to differential diffusion. The two-dimensional simulations
of Merryfield et al. (1998) exhibited a maximum in the flux difference after the
temperature flux and salt flux switched from downgradient to upgradient. By
examining cospectra (or flux spectra), Gargett, Merryfield & Holloway (2003) showed
that preferential transport of the scalar with the larger diffusivity requires larger
upgradient fluxes of the more slowly diffusing scalar at high wavenumbers. Rapid
distortion theory (RDT) for unsheared turbulence captures many of the phenomena,
including the temporal evolution of the fluxes and the cospectra, observed in DNS
(Jackson et al. 2005). Merryfield (2005) summarized the mechanisms in a schematic
(his figure 4). When the flow is unstratified, a parcel of fluid containing heat and
salt cannot restratify, and salt is transported more efficiently because it remains more
concentrated than temperature. However, for stratified flow, parcels can restratify,
and the net transport of temperature can be larger if the more efficient restratification
of salt counteracts the transport during the downgradient phase.

Upgradient fluxes and differential diffusion depend on the properties of the flow and
the properties of the fluid. Properties of the flow include the shear rate dU/dx3, the
buoyancy frequency N , the background temperature gradient dT /dx3, the background
salinity gradient dS/dx3, and a length scale L of the initial energy spectrum. Properties
of the fluid include the kinematic viscosity ν, the molecular diffusivity of temperature
DT , the molecular diffusivity of salt DS , and α and β , the coefficients of thermal
expansion and haline contraction. In terms of dimensionless parameters, quantities
such as the ratio d of the eddy diffusivities of salinity and temperature can be
expressed as

d =
KS

KT

= f (Rig, Gr, ScT , ScS, Le, Rρ), (1)

where Rig = N2/(dU/dx3)
2 is the gradient Richardson number, Gr = NL2/ν is the

Grashof number, ScT = ν/DT is the Schmidt number for temperature, ScS = ν/DS

is the Schmidt number for salinity, Le =DS/DT is the Lewis number, and Rρ =

(−αdT /dx3)/(βdS/dx3) is the density ratio. The activity of scalars – that is, whether
the scalars change the fluid’s density – will also be important. Jackson et al. (2005)
related the Grashof number to ε/νN2 (where ε is the rate of dissipation of turbulent
kinetic energy), a parameter often called the buoyancy Reynolds number and used to
describe the intensity of turbulence in a stratified fluid.

Because mean shear affects upgradient fluxes, it will also affect differential diffusion.
Direct numerical simulations (e.g. Holt, Koseff & Ferziger 1992), experiments (e.g.
Komori & Nagata 1996), and theory (e.g. Hanazaki & Hunt 2004) have all shown that
shear reduces the magnitude of upgradient fluxes. According to DNS and RDT, shear
dampens scalar flux oscillations (Hwang, Yamazaki & Rehmann 2006), and it can
also lead to persistent upgradient fluxes (Gerz & Schumann 1991; Holt et al. 1992;
Hanazaki & Hunt 2004). Laboratory experiments have lacked the measurements at
large times needed to confirm these two results from DNS and RDT.
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Although the most important case for oceanography has Schmidt number
ScT = ν/DT = 7 and ScS = ν/DS = 700 (with Lewis number Le= 0.01), other values
are often used because of practical constraints. For example, the DNS of Gargett
et al. (2003), Merryfield (2005) and Smyth, Nash & Moum (2005) used ScT =7
and ScS = 50–70 so that the small scales can be resolved, whereas the laboratory
experiments of Hebert & Ruddick (2003) used passive dyes with Schmidt numbers
of 2300 and 21000 in salt stratification to avoid complications with heat losses.
Studies of the effect of the Schmidt number, Lewis number, and activity of the scalars
are important for evaluating findings from DNS and experiments properly. For
example, RDT shows that Schmidt number constraints lead DNS to underestimate
oceanic differential diffusion at low Grashof numbers; RDT also suggests that when
the Schmidt numbers increase (or the molecular diffusivities decrease), differential
diffusion occurs at lower Grashof number (Jackson et al. 2005).

The effect of the density ratio, which measures the contributions of each scalar
to the density gradient, on differential diffusion is unclear. Effects of density ratio
on the ratio of eddy diffusivities were small in laboratory experiments on nearly
homogeneous turbulence with Rρ ≈ 0.25 and Rρ ≈ 5 (Jackson & Rehmann 2003b;
Martin & Rehmann 2006), and RDT calculations support this finding (Jackson et al.
2005). However, in the DNS of Merryfield (2005) greater differential diffusion occurred
when the density ratio was small. Density ratio dependence in the DNS of Smyth
et al. (2005) and the closure theory of Canuto et al. (2002) was consistent with that
in Merryfield (2005). Theory for differential diffusion in a large-scale internal wave
environment predicts that the diffusivity ratio will increase with increasing density
ratio (Holloway 2006).

We extend the RDT of Jackson et al. (2005) to include mean shear and to study
the effects of the dimensionless parameters on differential diffusion. RDT involves
approximations, but it complements other approaches well. It applies for the weakly
turbulent strongly stratified flows in which differential diffusion occurs, and it can
produce spectra and upgradient fluxes. Jackson et al. (2005) showed that differential
diffusion can be predicted using RDT. In § 2, RDT is developed for homogeneous
turbulence with constant shear and buoyancy frequency, and in § 3, the effects of
shear, density ratio, Schmidt numbers, Lewis number and activity of the scalars are
discussed. The main findings are summarized in § 4.

2. Rapid distortion theory
2.1. Assumptions

In RDT, nonlinear terms in the equations for fluctuating momentum and scalars
are neglected. The RDT equations are derived by linearizing the equations for the
fluctuating quantities, choosing a coordinate system that deforms with the mean
shear, and introducing a Fourier representation for the quantities (Rehmann &
Hwang 2005). The equations for the Fourier amplitudes are used to obtain equations
for the evolution of spectra. Spectra are obtained from a numerical solution and
integrated to compute fluxes.

Hanazaki & Hunt (2004) discussed the conditions for validity of RDT for sheared
stratified flow in detail. Estimating the terms in the governing equations for eddies of
size λ and velocity uλ, they showed that if the eddy Froude number Fr = uλ/Nλ is small,
then RDT is valid for a stratified flow (Hanazaki & Hunt 1996) and that the additional
condition Rig < O(1) ensures that RDT holds for sheared stratified flow. For low
and moderate Reynolds number (i.e. values typical of laboratory experiments and
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numerical simulations), a small Froude number Fr = u/N�, based on the velocity scale
u and length scale � of the large eddies, guarantees a small eddy Froude number, but
for high Reynolds number, the condition Frλ � 1 can be violated for the small scales
even when Fr � 1 (Hanazaki & Hunt 1996). These considerations are important for
differential diffusion because fluxes are computed by integrating the spectra over all
wavenumbers. At small times, differences in flux spectra appear at large wavenumbers,
but later the differences spread to small wavenumbers as well (e.g. figure 12 of Gargett
et al. 2003). In any case, because differential diffusion occurs in turbulence with low
Reynolds number (e.g. Jackson & Rehmann 2003b), RDT should be well suited to
study the key mechanisms and the effect of various dimensionless parameters.

Hanazaki & Hunt (2004) also discussed the applicability of RDT at large times.
The Froude number decreases with time in grid-turbulence experiments (Liu 1995).
At large times, a stratified flow can consist of a vortex mode and a wave mode –
that is, a combination of nonlinear horizontal motions with large time scales and
linear waves with small time scales (Riley & Lelong 2000). RDT captures the wave
mode, and although RDT does not reproduce the vortex mode well, the conditions
required for the vortex mode do not occur in many laboratory experiments and DNS
(Hanazaki & Hunt 2004). In fact, the change in dynamics of wakes that signals the
appearance of the vortex mode occurs at non-dimensional times t ′ = Nt ranging from
20 for spheres (Spedding, Browand & Fincham 1996) to 30 for grids (Liu, Maxworthy
& Spedding 1987). We use these findings to set the maximum integration time in the
next section.

2.2. Application to differential diffusion

We consider homogeneous turbulence with constant mean shear, stable linear profiles
of two active scalars, and a third, passive scalar with a linear profile. This case
extends previous work: Hunt, Stretch, & Britter (1988) solved the inviscid one-scalar
case, whereas Hanazaki & Hunt (1996) examined the effect of viscosity and diffusion
for a single scalar in unsheared flow. Hanazaki & Hunt (2004) added mean shear
to the one-scalar system, and Jackson et al. (2005) studied an unsheared flow with
three scalars of different diffusivities. For a three-scalar system with mean shear, the
equations for the Fourier amplitudes of the three velocities and scalars are

dû1

dt ′ = Ri−1/2
g

[
2κ2

1

k2
− 1

]
û3 +

[
κ1k3

k2

]
(ûS − ûT ) − Gr−1k2û1, (2a)

dû2

dt ′ = Ri−1/2
g

[
2κ1κ2

k2

]
û3 +

[
κ2k3

k2

]
(ûS − ûT ) − Gr−1k2û2, (2b)

dû3

dt ′ = Ri−1/2
g

[
2κ1k3

k2

]
û3 +

[
k2

3

k2
− 1

]
(ûS − ûT ) − Gr−1k2û3, (2c)

dûT

dt ′ = − Rρ

Rρ + 1
û3 − (GrScT )−1 k2ûT , (2d)

dûS

dt ′ =
1

Rρ + 1
û3 − (GrScS)

−1 k2ûS, (2e)

dûC

dt ′ = − Rρ

Rρ + 1
û3 − (GrScC)−1k2ûC, (2f)

where κj are wavenumbers made dimensionless by a length scale L, k2 = κ2
1 +κ2

2 +k2
3 ,

and k3 = κ3 − (dU 1/dx3)κ1t . The temperature T, salinity S, and passive scalar C are
normalized such that ûT = gαT̂ /N , ûS = gβŜ/N and ûC = gαCĈ/N , where αC is
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a constant with dimensions of C−1. The passive scalar is taken to mirror the active
temperature scalar in terms of initial distributions but without affecting the buoyancy;
that is, the passive scalar is distributed so that αCdC̄/dx3 = αdT̄ /dx3.

As in Rehmann & Hwang (2005) and Jackson et al. (2005), the RDT equations
(2a)–(2f ) are used to write a set of equations for the evolution of the spectra by
employing a discrete Fourier transform of the two-point correlations. The initial
conditions imposed on this system include energy spectra for isotropic turbulence:

Eij (κ, 0) =
E(k)

4πk2

(
δij − κiκj

k2

)
. (3)

Following Townsend (1980), the energy spectrum function is taken to be

E(k)

q2
0L

=
1

3
√

2π
k4 exp

(
− 1

2
k2

)
, (4)

where q2
0/2 is the initial turbulent kinetic energy. Assuming no initial scalar

fluctuations requires that all the remaining spectra are set to zero. The system of
ordinary differential equations for the evolution of the spectra was solved numerically
using the DLSODA solver, a variant of the Livermore solver for ordinary differential
equations, which uses a dense or banded Jacobian and the backward differentiation
formula methods (Gear methods) when the system is stiff and Adams methods
(predictor–corrector) when the system is not stiff (Hindmarsh 1983). The numerical
solution was tested against analytical and numerical results from previous work
to ensure adequate spatial and temporal resolution. Once the vertical scalar flux
spectra ES3, ET 3 and EC3 were computed, they were integrated in space to yield the
vertical fluxes for salt FS = u′

Su
′
3, temperature FT = −u′

T u′
3, and the passive scalar

FC = −u′
Cu′

3, where primes denote fluctuating quantities and the overbars denote
ensemble averages. Except for runs examining the evolution of scalar spectra in § 3.1
(simulated until t ′ = 3), all runs were simulated until t ′

max = 30, and the diffusivity
ratio was calculated as

d =
KS

KT

= Rρ

∫ t ′
max

0
FSdt ′∫ t ′

max

0
FT dt ′

. (5)

For two passive scalars, the density ratio was taken to be unity because the initial
distributions of the two passive scalars were identical.

The diffusivity ratio computed with (5) depends on t ′
max , the time over which the

fluxes are integrated. Most of the contribution to the overall differential diffusion
occurs in the first few buoyancy periods; for example, in the DNS of Merryfield
(2005), the diffusivity ratio converged within the first four buoyancy periods (t′ ≈ 25).
Nevertheless, in RDT, small oscillations in the fluxes continue to contribute to the
transport after this time. Because RDT underestimates the rate of decay of vertical
fluxes compared to DNS (Hanazaki & Hunt 1996), we ended the calculations at a
specified value of t′ to avoid a low bias in the diffusivity ratio. When comparing
the RDT to the experiments of Jackson & Rehmann (2003b), Jackson et al. (2005)
integrated the fluxes over a period equal to the waiting time between stir sets in the
experiments. Here we integrated until t′ = 30, the non-dimensional time by which grid
turbulence collapses completely (Liu et al. 1987). This integration period, which is
similar to that in Merryfield (2005), captures the most important buoyancy periods
with respect to differential diffusion, while not allowing a significant influence of the
long-time behaviour of RDT.
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2.3. Relevance for natural flows

The RDT model described in the previous subsection allows the effect of dimensionless
parameters on differential diffusion to be examined. However, three issues – the initial
conditions, the range of scales represented, and the assumption of homogeneous
turbulence – could be discussed further to understand how the model might apply to
natural flows. The initial conditions specified above include a spectrum for the velocity
field, but zero density fluctuations. In fact, Hunt et al. (1988) and Hanazaki & Hunt
(1996) found that RDT predicts a strong dependence of fluxes on the initial conditions
– in particular, PE0/KE0, the ratio of the initial fluctuating potential energy and the
initial fluctuating kinetic energy (i.e. q2

0/2). This ratio is difficult to measure directly
at the beginning of a turbulent event in the ocean. Comparing RDT to laboratory
experiments suggests the ratio of initial energies is small. After accounting for decay,
Hunt et al. (1988) obtained qualitative agreement with laboratory measurements by
choosing PE0/KE0 = 0, whereas Hanazaki & Hunt (1996) used PE0/KE0 ≈ 0.15 in
comparing to results on grid turbulence. In contrast, Gerz & Yamazaki (1993) and
Hwang et al. (2006) have studied the extreme case of PE0/KE0 → ∞ as a model
of turbulence generated from density fluctuations remaining from a turbulent patch
whose velocity fluctuations have decayed. Although setting PE0/KE0 	= 0 would
yield quantitatively different results and examining differential diffusion in buoyancy-
generated turbulence would be an interesting extension, the choice PE0/KE0 = 0
corresponds well enough to previous measurements and represents a logical starting
point for studying the effect of other parameters on differential diffusion.

A related issue is the range of wavenumbers that can develop. As Jackson et al.
(2005) discussed, the wavenumber range is set by the initial spectrum because a
linearized model such as RDT cannot produce an energy cascade. In DNS, however,
non-zero spectral values appear at higher wavenumbers for scalars with low diffusivity
than for scalars with high diffusivity because of differences in Batchelor wavenumbers.
While RDT cannot generate new scales, a closer match between RDT predictions and
DNS results and field measurements could be achieved by specifying initial scalar
spectra with different wavenumber ranges.

The model described in § 2.2 applies to homogeneous turbulence, but turbulence
and mixing in the interior of oceans and lakes usually occurs in patches (e.g. Baker
& Gibson 1987; Gregg 1987). The degree of inhomogeneity can be measured by
the ratio of the integral scale � of the turbulence and the scale Lp of the patch.
When the patch is much larger than the energy-containing eddies (i.e. �/Lp → 0),
then homogeneous turbulence is a good approximation. In laboratory experiments,
�/Lp ≈ 0.05 at t′ ≈ 4, when stratification limits the growth of a patch (De Silva &
Fernando 1992). To account for the inhomogeneity, we could extend the WKB theory
of Nazarenko, Kevlahan & Dubrulle (1999), who considered localized turbulence
subjected to weakly non-uniform distortion from irrotational strain; in this case,
the theory successfully explained the experimental observations that the small-scale
turbulence generates a large-scale flow that limits the distortion. Applied to stratified
flow, the WKB theory would allow the feedback between the turbulence and mean
velocity and density profiles to be studied.

3. Results and discussion
In this section, results from many runs are considered in order to evaluate the effect

of the Richardson number, Grashof number, density ratio, Schmidt numbers, Lewis
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Figure 1. Temporal evolution of the scalar fluxes for Gr =10. (a) Rig → ∞ (unsheared);
(b) Rig = 1. The solid line is the salt flux FS (Sc= 700), the dashed line is temperature flux FT

(Sc= 7), and the dotted line is passive scalar flux FC (Sc=10). Flux differences FT – FS (grey
line) are shown on the right axes.

number and scalar activity. Predictions from RDT are also compared with results
from previous numerical and experimental studies.

3.1. Scalar fluxes and spectra

The excess upgradient flux of the lower molecular diffusivity scalar (salt) is the main
cause of differential diffusion. The scalar fluxes oscillate between downgradient and
upgradient (figure 1). At small times, the initial turbulent kinetic energy sustains
downgradient flux, and in this phase, temperature exhibits smaller downgradient
flux because its larger diffusivity leads to greater damping – especially at higher
wavenumbers (figure 2a). After a quarter buoyancy period (Nt ≈ π/2), the scalars
restratify. Upgradient fluxes appear at small scales first (figure 2b) and eventually
spread to the entire spectrum (figure 2c); again, the magnitude of the salt flux is
larger than the magnitude of the temperature flux. When the total fluxes become
downgradient at about Nt = 3.5 in the unsheared case (figure 1a), the temperature
flux is larger because of the excess upgradient flux of salt. The fluxes continue to
oscillate in time until they are damped by viscosity and diffusion. As Jackson et al.
(2005) noted, the evolution of vertical scalar fluxes and spectra predicted by RDT
resembles that seen in DNS (Merryfield et al. 1998; Gargett et al. 2003).

Consistent with previous work, RDT predicts that mean shear reduces the
magnitude of upgradient fluxes of all scalars, increases damping of the oscillating
fluxes, and produces persistent upgradient fluxes. Early in the evolution, shear affects
the scalar fluxes very little in a flow with Rig =1 (figures 1, 2a, 3a). Later, although the
fluxes are similar, upgradient fluxes in the spectra are smaller in the sheared case, and
they appear at higher wavenumbers (figures 2b, 3b). A similar reduction in fluxes and
suppression of upgradient fluxes at large scales occurred in the experiments of Komori
& Nagata (1996). Still later, upgradient fluxes appear at all wavenumbers, but the
spectral values are much smaller in the sheared flow (figures 2c, 3c). For Nt > 2, the
fluxes are smaller in the sheared case (figure 1b), and they mostly remain upgradient.
Persistent upgradient fluxes at small scales are common in sheared and unsheared



8 P. R. Jackson and C. R. Rehmann

4

5

0

–5

0

–1

–2

–3

(a)

2

E
T

3,
 E

S3
, E

C
3

0 2 4 6

20

0

4 6

2
κ

4 6

(×10–3)

(b)

E
T

3,
 E

S3
, E

C
3

(×10–4)

(c)

E
T

3,
 E

S3
, E

C
3

(×10–3)

Figure 2. Temporal evolution of the nondimensional vertical scalar flux spectra for Gr = 10
and Rig → ∞. (a) Nt= 0.34; (b) Nt = 1.49; (c) Nt = 2.65. The solid lines are salt flux spectra
ES3 (Sc= 700), the squares are temperature flux spectra ET 3 (Sc= 7), and the filled circles are
passive scalar flux spectra EC3 (Sc= 10).
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Figure 3. Temporal evolution of the nondimensional vertical scalar flux spectra for Gr = 10
and Rig = 1. (a) Nt = 0.34; (b) Nt = 1.49; (c) Nt = 2.65. The line designations are the same as
in figure 2.

flows (Gerz & Schumann 1991; Komori & Nagata 1996). Gerz & Schumann (1991)
argued that the total flux can be persistently upgradient when large-scale oscillating
fluxes cancel and leave only the small-scale upgradient fluxes. Persistent upgradient
fluxes in sheared flow may be attributed to reduced upgradient fluxes at large scales.
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Although the passive scalar is not influenced directly by gravity, it experiences both
downgradient and upgradient fluxes (figures 1–3). Upgradient fluxes of the passive
scalar arise because of the upgradient fluxes of the active scalar. In the cases shown
in figure 1, flux of the passive scalar, which has a Schmidt number close to that of
temperature, follows the temperature flux closely. Increasing the Schmidt number of
the passive scalar above that of the active scalar with the smaller diffusivity does
not increase the upgradient fluxes of the passive scalar because the upgradient fluxes
are controlled by the active scalars. For unsheared, stratified flow without viscosity
or diffusion, Hanazaki (2003) used RDT to show that when the initial spectrum of
density fluctuations is zero (as it is in our case), the ratio of the fluxes of buoyancy
and the passive scalar depends only on the ratio of N2 and the mean gradient of the
passive scalar; differential transport of the active and passive scalars occurred only
under certain initial conditions. In our case, viscosity and diffusion alter the time
development and render the total fluxes of temperature and passive scalar different
even in conditions that would suggest equal eddy diffusivities in unsheared inviscid
non-diffusive flow.

3.2. Effects of density ratio

The effects of the various parameters, such as density ratio, on differential diffusion
can be examined by integrating the fluxes and computing the diffusivity ratio d using
(5). In the base case of unsheared flow with Rρ = 1, the diffusivity ratio is near
unity at high Grashof number, for which effects of viscosity and diffusivity are less
important (figure 4a). As the Grashof number decreases to moderate values, the total
flux of temperature exceeds that of salt (i.e. d < 1). At low values of Gr, the flow
is so heavily damped that the flux is non-zero for a short time only, and the effects
of restratification are smaller. Therefore, the differential transport is smaller, and d
increases again; the increase at low Gr is discussed further in § 3.3.

The density ratio affects the diffusivity ratio most at low Grashof numbers (figure 4).
When the density ratio increases from 10−3 to 103, the diffusivity ratio can increase by
as much as a factor of 16 for the unsheared case and 25 % for the flow with Rig = 1.
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The largest effects of the density ratio on differential diffusion occur at Grashof
numbers below the Grashof number associated with the minima in the diffusivity
ratio curves – that is, as molecular diffusion becomes more important. Both Merryfield
(2005) and Holloway (2006) argued that as Rρ increases, the more diffusive scalar
increasingly controls the restratification, and differential transport is smaller (i.e. d
increases), as in figure 4.

Shear decreases the effect of the density ratio on the magnitude of the differential
diffusion and increases the range of Gr over which density ratio influences differential
diffusion (figure 4b). Increasing shear reduces the effect of Rρ because shear reduces
the magnitude of upgradient fluxes and dampens the fluxes, as discussed in § 3.1. This
result is consistent with the closure theory of Canuto et al. (2002), which predicts the
greatest effect of the density ratio at large gradient Richardson numbers (i.e. weakly
sheared flows). In sheared flows, effects of the density ratio appear over two more
decades in Gr; as discussed in § 3.5, shear makes molecular diffusion effects important
at higher Gr relative to the unsheared case.

The present results agree with the results in Jackson & Rehmann (2003b), Martin
& Rehmann (2006) and Jackson et al. (2005), who showed that the density ratio
affected differential diffusion little for parameters typical for geophysical flows. The
present work is also consistent with recent DNS (Merryfield 2005; Smyth et al. 2005)
and theory (Holloway 2006) in some ways. All show that d increases with increasing
Rρ , and all predict the greatest effect of the density ratio on differential diffusion at
low values of ε/νN2, which Jackson et al. (2005) related to the Grashof number as
Gr =C1ε/νN2, with C1 ≈ 7. However, among the studies that address high Gr or high
ε/νN2, the simulations of Merryfield (2005) show considerable effect of density ratio
even at high ε/νN2, whereas the present work and the work of Holloway (2006) do
not. Increasing the Lewis number to 0.1, as in the simulations of Merryfield (2005),
does not lead to noticeable effects of the density ratio at higher Gr. The differences
between the results from RDT and DNS could be due to nonlinear processes not
modelled in RDT.

3.3. Effects of Schmidt number

For unsheared flow, varying the Schmidt numbers while holding the Lewis number
constant affects the magnitude of the diffusivity ratio little but changes the range of
Grashof number over which differential diffusion occurs (figure 5a). Over a wide range
of Schmidt number, the minima in diffusivity ratio vary little, but as the Schmidt
numbers decrease, differential diffusion occurs for larger Gr. If Grc is the Grashof
number at which the diffusivity ratio first deviates from unity, then a power-law fit to
the results gives GrC ∝ ScT

−1, except at high Schmidt number (Jackson 2006, figure
3.8). This result is consistent with results from Shih et al. (2005) and Ivey, Winters
& De Silva (2000), who predicted that the value of ε/νN2 below which molecular
diffusion dominates scalar mixing is proportional to Sc−1. This Schmidt-number
dependence suggests that even though turbulence in the atmosphere is more intense
than in the ocean (Joseph et al. 2004), differential diffusion may still be important
because the Schmidt numbers of the scalars are less than unity.

Shear modifies these results (figure 5b). As observed in § 3.2, shear increases the
range of Grashof number over which differential diffusion occurs. Also, shear causes
the magnitude of differential diffusion to depend on the Schmidt numbers, especially
for ScT > 1. We might expect differential diffusion in flows with lower Schmidt
numbers to be more sensitive to shear because the molecular diffusivity would affect
larger scales, and past work has shown that shear reduces upgradient fluxes at large
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Figure 5. Diffusivity ratio as a function of Gr for various Schmidt number pairs. (a) Rig →
∞ (unsheared); (b) Rig = 1. All runs had Le= 0.1 and Rρ = 1.

scales while leaving upgradient fluxes at small scales mostly unchanged (e.g. Komori
& Nagata 1996). However, Hanazaki & Hunt (2004) observed that shear suppressed
small-scale vertical motions and enhanced large-scale motions; this result is consistent
with the smaller differential diffusion (i.e. larger diffusivity ratios) in sheared flows
with high Schmidt numbers.

The observation that the critical Grashof number is inversely proportional to ScT

suggests plotting the diffusivity ratio as a function of GrScT = NL2/DT . In both the
sheared and unsheared cases, the data collapse well for ScT < 1, but not for ScT > 1
(figure 6). The parameter NL2/DT can be interpreted as a ratio of a diffusion time
L2/DT and a restratification time N−1. When NL2/DT decreases, more diffusion
occurs during a restratification period, and differences between the fluxes become
apparent. Similarly, the Schmidt number can be interpreted as the ratio of the time
λ2/DT for diffusion of the scalar and the time λ2/ν for diffusion of momentum across
a length λ. When ScT < 1, molecular diffusion of the scalar affects a larger range of
scales than molecular diffusion of momentum; therefore, scalar diffusion controls the
vertical flux, and the curves collapse when plotted against NL2/DT . When ScT > 1,
viscosity affects a larger range of scales and limits the vertical velocity fluctuations
contributing to the flux, and the times for diffusion of momentum and diffusion of
the scalar (i.e. Gr and ScT ) both become important.

As the Grashof number decreases, d increases to values above unity. The diffusivity
ratio is computed from turbulent fluxes; if fluxes from pure molecular diffusion
were included, the total diffusivity ratio would approach the Lewis number, as in
the experiments of Jackson (2006). The increase in d can be explained qualitatively
by reconsidering the fluxes in figure 1. As explained in § 3.1, the salt flux exceeds
the temperature flux at small times. If the flow is heavily damped (small Gr),
restratification will be unimportant, and d can exceed unity. In fact, in the limit
Gr → 0, the diffusivity ratio can be computed from (2) and (5) as

d =
ScS(1 + ScT )

ScT (1 + ScS)
= Le−1 (1 + ScT )

(1 + ScS)
, (6)
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Figure 6. Diffusivity ratio as a function of NL2/DT for various Schmidt number pairs. (a)
Rig → ∞ (unsheared); (b) Rig = 1. All runs had Le =0.1 and Rρ = 1.

which shows that d > 1 for low Gr when ScS > ScT . This result holds for active
and passive scalars in sheared and unsheared flows because the viscous and diffusive
terms in equation (2) dominate.

3.4. Effects of Lewis number

As the difference between molecular diffusivities increases (i.e. the Lewis number
decreases), differential diffusion increases (figure 7). The Lewis number was varied
by holding ScT constant and changing ScS . The curves for different Le differ
most at intermediate Grashof number. For the unsheared cases at Gr = O(10), the
diffusivity ratio is 1 for identical scalars (Le = 1), and it approaches zero for scalars
with widely different molecular diffusivities. The critical Grashof number varies
little because ScT is fixed. The case with Rig = 1 mimics the unsheared case, but
with less overall differential diffusion and a shift to higher Grashof number. RDT
probably underestimates differential diffusion because in real turbulence, the Batchelor
wavenumbers separate as the Lewis number decreases and greater restratification of
the scalar with low molecular diffusivity will increase differential diffusion. In contrast,
RDT neglects the cascade, and in our application, the range of scalars is set by the
initial velocity spectrum, as discussed in § 2.3.

Resolution requirements have so far constrained DNS to use Lewis numbers larger
than the heat–salt value of O(10−2), and RDT can help to estimate the implications.
The direct simulations of differential diffusion of Merryfield (2005) and Smyth et al.
(2005) used Schmidt numbers of 7 and 70 (Le =0.1) and 7 and 50 (Le =0.14),
respectively. The theory of Holloway (2006) examined the effect of the Lewis number
on differential diffusion for Le= 0.1 and Le= 0.01; the observation of less differential
diffusion for Le= 0.1 than for Le =0.01 is consistent with intuition and RDT. Gargett
et al. (2003) estimated that differential diffusion was about 20–40 % smaller for their
three-dimensional DNS with Le= 0.1 than the two-dimensional DNS of Merryfield
et al. (1998) with Le= 0.01. However, RDT for an unsheared flow simulated until
t ′ = 240 shows that the two cases have diffusivity ratios within 10 % for Gr >

600 and 40 % for Gr > 300, but for low Grashof numbers, the diffusivity ratio for
heat and salt is greatly underpredicted if theory or simulations use Le= 0.1 (Jackson
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Figure 7. Diffusivity ratio as a function of Grashof number for various Lewis numbers. (a)
Rig → ∞ (unsheared); (b) Rig =1. All runs had Rρ = 1.

et al. 2005). For Le= 0.1 and Le= 0.01, the present work, in which the fluxes were
computed until t ′ = 30, predicts a factor of 5 difference in the diffusivity ratio minima
for an unsheared flow and only a 4 % difference in the case of Rig =1.

RDT shows that differential diffusion can also be significant even when the Schmidt
numbers differ by less than one order of magnitude. Oceanographers, limnologists
and laboratory experimentalists regularly assume equal mixing between a tracer and
the scalar of interest (e.g. Ledwell, Watson & Law 1993; Komori & Nagata 1996)
even though the molecular diffusivities of the tracer and the scalar of interest are
rarely equal. For example, sulphur hexafluoride, which is used in ocean tracer release
experiments, has a Schmidt number between 611 and 2263 (King & Saltzman 1995)
over the range 5–30 ◦C, and it is used to measure vertical mixing of salt (Sc= 700,
0.9 > Le > 0.3) and heat (Sc= 7, 0.01 > Le > 0.003). Dyes are also used to estimate
mixing in natural waters. Disodium fluorescein (Sc= 1200) and Rhodamine WT dyes
(Sc =2000) are frequently used to estimate vertical mixing of heat (0.0035 > Le >

0.006) and biological and chemical constituents (0.06 > Le > 2; see Socolofsky &
Jirka 2002). Disodium fluorescein dye is also used in the laboratory to track salt for
optical mixing measurements (Le= 0.6; e.g. Komori & Nagata 1996). In these cases
with Le < 1, the flux of the scalar of interest can be underestimated.

3.5. Effects of scalar activity

The discussion in the previous sections focused on active scalars, such as heat and salt,
which affect the density and the dynamics of the flow. To examine the effects of scalar
activity, a case with two active scalars with Schmidt numbers of 7 and 700 (heat and
salt) was compared to two cases with two passive scalars with Schmidt numbers of 7
and 700 and a third, active scalar – either heat or salt. Some features of the diffusivity
ratio can be expected from the discussion in previous sections (figure 8): At high Gr,
properties of the scalars become unimportant, while at low Gr, the diffusivity ratio
approaches the limit in (6). When Rig = 1, effects of the scalar properties are seen at
higher Gr, but differential diffusion is reduced for most Grashof numbers.

At intermediate Grashof numbers, the effect of scalar activity can be significant. In
particular, differential diffusion of two passive scalars depends on the active scalar.
For the unsheared case (figure 8a), if the active scalar is salt, then differential diffusion
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Figure 8. Diffusivity ratio as a function of Grashof number for active and passive scalar
pairs. (a) Rig → ∞ (unsheared); (b) Rig = 1. The runs with the passive scalar pairs have a
third, active scalar that provides background stratification; for these runs, the diffusivity ratio
is based on the fluxes of the two passive scalars.

increases (i.e. d decreases) by as much as 40 % compared to the case with active heat
and salt, but if the active scalar is temperature, then differential diffusion decreases by
as much as a factor of 8. The larger upgradient flux that occurs for salt, as discussed
in § 3.1, leads to more differential diffusion of the passive scalars. The case with active
heat and salt is bounded by the passive scalar cases because salt and heat contributed
equally to the stratification (Rρ =1). These results are consistent with those in § 3.2,
in which effects of large and small density ratio were considered (figure 4).

The dependence of differential transport of passive scalars on the active scalars
suggests that the density ratio should affect transport of passive scalars (such as
tracers, dyes, etc.) in flows with two active scalars, such as the ocean. In particular,
these findings are important for studies of scalar transport in high-latitude oceans and
estuaries, where salinity controls the stratification. Also, because Schmidt numbers
typically range from 500 to 2500 for most scalars of interest (Socolofsky & Jirka
2002), biogeochemical scalar transport in lakes and other freshwater bodies is subject
to differential diffusion. Errors can be introduced when estimating transport of such
scalars using temperature microstructure methods; that is, if the eddy diffusivity of
the scalar of interest is assumed to equal the eddy diffusivity of temperature, the error
can exceed the typical uncertainty associated with microstructure methods.

3.6. Effects of shear

In the preceding sections, shear reduced the magnitude of upgradient fluxes, increased
damping of the fluxes, and generated persistent upgradient fluxes. As a consequence,
shear reduced the effect of the density ratio on differential diffusion, made the
diffusivity ratio minima depend on the Schmidt number of the higher diffusivity
scalar, increased the critical Grashof number and the range of Grashof number over
which differential diffusion was important, and lessened the effect of scalar activity
on the diffusivity ratio at intermediate Grashof numbers. However, these results are
based on a comparison between the unsheared case and a case with Rig = 1. We now
examine the effect of shear on differential diffusion by considering a range of Rig .
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The effect of shear depends on the Grashof number (figure 9). For Gr < 30, shear
reduces differential diffusion. For Gr > 30, the effect of shear is more complex, but it
generally increases differential diffusion compared to the unsheared case. In general,
a larger Rig leads to a lower minimum diffusivity ratio. For example, decreasing Rig
from 10 to 0.1 increases the minimum diffusivity ratio by a factor of nearly five.
Therefore, a flow with significant differential diffusion may be altered to produce
equal mixing by increasing the shear. This result could be important for laboratory
experiments and industrial mixing processes (e.g. turbulent diffusion flames, see Bilger
1989) in which equal mixing rates of multiple scalars are desired and the flow is
externally controlled. For the runs in figure 9, the critical Grashof number was largest
for Rig = 0.25. Values of Rig between about 0.1 and 0.25 separate flows with growing
and decaying turbulence in numerical simulations of the full governing equations (e.g.
Shih et al. 2000).

To understand why shear affects differential diffusion differently at high and low
Grashof numbers, the scalar fluxes were examined for Gr = 1000 and Gr = 30 for
Rig =1.0 and ∞. At both Grashof numbers, shear reduces the upgradient fluxes,
produces nearly persistent upgradient fluxes, and dampens the flux oscillations
(figure 10). However, for Gr = 30, shear increases the diffusivity ratio, whereas for
Gr = 1000, shear decreases the diffusivity ratio. For low Grashof number, strong effects
of viscosity lead to small scalar fluxes that dampen quickly even in unsheared flow
(figure 10a). Shear further reduces oscillations in the flux (figure 10b); in particular, the
smaller upgradient fluxes early in the evolution lead to a smaller difference between
the cumulative scalar fluxes ΦT =

∫
FT dt ′ and ΦS =

∫
FSdt ′ (figure 11a,b) and a

larger diffusivity ratio than in the unsheared case. Persistent upgradient fluxes later
in the evolution contribute little to further decreasing the diffusivity ratio because the
fluxes become small quickly. For high Grashof number, the fluxes oscillate for long
times in the unsheared case (figure 10c). Shear mostly eliminates the downgradient
fluxes for Nt > π/2 (figure 10d), and the persistent upgradient fluxes lead to a greater
difference between the cumulative fluxes (figure 11c, d) and a smaller diffusivity ratio.

3.7. Comparison with numerical and experimental results

In this section, the present theory is compared with previous experimental and
numerical studies of differential diffusion. Jackson et al. (2005) compared their
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RDT results with the work of Jackson & Rehmann (2003b), Martin & Rehmann
(2006), and Hebert & Ruddick (2003) and found good agreement between RDT
and measurements of differential diffusion of heat and salt. RDT was also able to
predict a large shift in the diffusivity ratio curve to low ε/νN2 for passive dyes in a
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salt stratification (Hebert & Ruddick 2003). The present work extends the work of
Jackson et al. (2005) and focuses on comparing to the experimental work of Turner
(1968), to the numerical studies of Merryfield (2005) and Smyth et al. (2005), and to
the theory of Holloway (2006) and Canuto et al. (2002).

Directly comparing predictions of RDT to results from previous work is
complicated by two issues. The first is the time t ′

max over which the fluxes are
integrated, which we take to be 30; this choice is explained in § 2.3. The second issue
is the relationship between the Grashof number in RDT and a parameter of DNS
and experiments (usually ε/νN2). As stated in § 3.2, Jackson et al. (2005) related
these parameters by Gr = NL2/ν ∼= C1ε/νN2 and found that their RDT matched
the data of Jackson & Rehmann (2003b) and Martin & Rehmann (2006) quite well
if C1 = 7. They argued that this result means that the length scale L is related to
the Ozmidov scale, an important length scale for strongly stratified flow, by an O(1)
coefficient. In addition to the uncertainty introduced by the value of the coefficient
of proportionality, further uncertainty comes from the values of ε/νN2 computed for
past work. The DNS of Gargett et al. (2003), Merryfield (2005), and Smyth et al.
(2005) compute ε/νN2 directly, but ε/νN2 for the experiments of Turner (1968) was
estimated (Nash & Moum 2002).

The magnitude of the diffusivity ratio and its dependence on ε/νN2 predicted by
RDT for unsheared flow is consistent with experiments, DNS, and theory (figure 12).
All predict that the diffusivity ratio decreases with decreasing Grashof number (or
ε/νN2) from unity to quite low values. RDT slightly overpredicts the diffusivity ratio
at high ε/νN2 and underpredicts at very low ε/νN2. Increasing the Lewis number to
O(10−1) reduced the difference between RDT and DNS at low ε/νN2, though RDT
still underpredicts d. These slight differences might be caused in part by taking a
constant integration period which would bias the diffusivity ratio high at large ε/νN2.
Although RDT for Le= 0.01 differs at low ε/νN2, the experiments of Turner (1968)
and the theory of Holloway (2006) all apply to the heat–salt case; however, as Nash
& Moum (2002) and Holloway (2006) discuss, several assumptions were required to
obtain the quantitative curves.

For sheared flow, RDT predicts much less differential diffusion than observed in
the flow studied by Smyth et al. (2005) (figure 13). In their simulations, Smyth et al.
(2005) set the bulk Richardson number for the billows Ri0 = (�bδρ)/(�U )2 = 0.1
and 0.12 – where �b is the buoyancy jump, �U is the velocity jump, and δρ is
the thickness of the density interface. These bulk Richardson numbers translate to
average gradient Richardson numbers within the interface of about 0.05 to 1 based
on the laboratory measurements of Strang (1997). Over the range 0.1 < Rig < 1,
RDT overpredicts the diffusivity ratio by 30–60 % with the best agreement at higher
Rig (figure 13). Differences in the effect of shear might arise owing to differences in
the flows; the present RDT applies to a linearly stratified flow with constant shear (or
linear velocity profile), while Smyth et al. (2005) studied a two-layer flow with shear
imposed across the interface.

As discussed in § 3.2, RDT and previous work predict that the diffusivity ratio
increases with increasing density ratio. However, although the DNS of Merryfield
(2005) and Smyth et al. (2005) and the theory of Holloway (2006) and Canuto
et al. (2002) report effects of the density ratio on d, RDT predicts no significant
dependence on the density ratio over the range of ε/νN2 covered in previous studies.
Only Merryfield (2005) found density-ratio dependence at large ε/νN2. In the theory
of Canuto et al. (2002), the effect of the density ratio on differential diffusion decreases
with increasing shear, which is consistent with RDT.
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Figure 12. Diffusivity ratio as a function of ε/νN2 for unsheared flows. Filled symbols have
Rρ = 0, open symbols have Rρ → ∞, and open symbols with dots have Rρ = 1. The symbols
and lines are as follows: circles, RDT (Le = 0.01); diamonds, RDT (Le = 0.1); squares,
Merryfield (2005) (Le= 0.1); dash-dot line, Turner (1968) (Le = 0.01); solid line, Holloway
(2006) (Le= 0.1, Rρ = 1); dashed line, Holloway (2006) (Le= 0.1, Rρ = 2); dotted line, Holloway

(2006) (Le=0.1, Rρ =0.5). The constant of proportionality of 7 between Gr and ε/νN2 used
by Jackson et al. (2005) has been applied to the present RDT results.
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Figure 13. Diffusivity ratio as a function of ε/νN2 and Richardson number for Le= 0.14:
triangles, DNS of K-H billows (Smyth et al. 2005); lines, present RDT with Rρ = 1: ∗, Rig = 0.1;
+, Rig =0.25; �, Rig = 1; ×××, Rig → ∞. DNS data symbols are designated by density ratio: filled
symbols have Rρ = 0.2, open symbols have Rρ = 5, and open symbols with dots have Rρ =1.

The general agreement of the results from various studies suggests that differential
diffusion may not depend strongly on the process generating the turbulence, the
steadiness of the mixing, or shear in a two-layer flow. Merryfield (2005) drew a
similar conclusion when comparing his work to the work of Jackson & Rehmann
(2003b). However, the sensitivity of differential diffusion in a linearly stratified flow
to uniform shear predicted by RDT and the lack of agreement with observations in
a two-layer stratified shear layer (Smyth et al. 2005) suggests that this generalization
may not hold for all flows.



Theory for differential transport of scalars in sheared stratified turbulence 19

4. Summary and conclusions
We used rapid distortion theory to study why differential diffusion occurs and

how changes in properties of the scalars and the flow affect it. In particular, for
homogeneous turbulence in a sheared, stratified flow with multiple scalars, we
evaluated the effect of the density ratio, the Schmidt numbers of the scalars, the
Lewis number, the scalar activity, and shear.

RDT captures the essential mechanism for differential diffusion – excess upgradient
flux of the scalar with lower molecular diffusivity – identified by DNS (e.g. Gargett
et al. 2003). Whereas differential transport increases during periods of upgradient flux,
it decreases during periods of downgradient flux. Despite not being directly influenced
by gravity, passive scalars can exhibit differential diffusion because of coupling with
the active scalars in the flow; the active scalar with the larger Schmidt number sets
the limit for the flux and ultimately the differential transport of the passive scalar.
Shear reduces the magnitude of upgradient fluxes, increases damping of the flux
oscillations, and generates persistent upgradient fluxes. The net effect on differential
diffusion depends on the Grashof number, or the relative importance of buoyancy
and viscous effects.

RDT also allows a study of scalars with high Schmidt numbers without the high
computational cost of DNS. Therefore, effects of parameters varied over wide ranges
can be explored. Differential diffusion increases with increasing density ratio; in RDT
the effects were confined to low Grashof number and large Richardson number, but
DNS and other theory yield density ratio dependence at higher Gr. The Schmidt
numbers control the Grashof number below which differential diffusion occurs; for
fixed Lewis number, the critical value of Gr decreases with increasing Schmidt number.
With shear, the magnitude of differential diffusion decreases sharply with increasing
Schmidt number. When one of the Schmidt numbers is fixed, differential diffusion
decreases with increasing Lewis number. Also, differential transport of passive scalars
increases when the Schmidt number of the scalar stratifying the flow increases.

The present work and the work of Jackson et al. (2005) demonstrate the usefulness
of RDT in studies of differential diffusion. Unlike simple eddy-diffusivity models
and two-equation turbulence models, RDT can predict upgradient fluxes and their
wavenumber dependence which are essential in differential diffusion. Therefore, as
Jackson et al. (2005) recommended, RDT could be used to develop subgrid-scale
models of weakly turbulent, strongly stratified flows in the interior of oceans and
lakes. Because most biological and chemical scalars have high Schmidt numbers
(Socolofsky & Jirka 2002; Gargett 2003), RDT would be a useful tool in modeling
diapycnal biogeochemical transport in weakly turbulent stratified flows.
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